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Abstract: A new approach is introduced for calculating the spectral shifts of the most bathochromicπ f π*
transition of an aromatic chromophore in apolar environments. As an example, perylene in solid and liquid
n-alkane matrixes was chosen, and all shifts were calculated relative to one well-defined solid-inclusion system.
It was shown that a simple two-level treatment of the solute using Hu¨ckel theory yields spectral shifts in
excellent agreement with experimental results for the most prominent inclusion sites of perylene in solidn-alkane
surroundings and for the dilute solutions in liquidn-alkanes. The idea is general enough to be applied to any
aromatic chromophore in a nonpolar solvent matrix. In contrast to earlier treatments, this approach is based on
geometry- and environment-dependent polarizabilities, employs anr-4 dependence for the dispersion energy,
and is conceptually very simple and computationally very efficient.

1. Introduction

A solvent-induced UV/vis spectral red shift is due to the
lowering of the transition energy between the ground and the
excited states of a chromophore, caused by interactions of the
chromophore-bearing (solute) molecule with the solvent mol-
ecules. We restrict ourselves to the case ofπ f π* transitions
of aromatic chromophores in nonpolar solvents, in which
permanent electrostatic interactions and hydrogen bonding are
absent1 and where, therefore, the predominant interaction is
dispersive. For the shifts in UV spectra of aromatic chro-
mophores, environments of noble gases,2-6 of alkanes,7-10 and
of polymeric nonpolar media1 have been the primary targets in
previous studies; several models have been proposed,2-6,11-15

and considerable experimental data, mostly on chromophores

in alkane crystals, have been collected.2-4,16-24 Nevertheless,
the theoretical concepts are far from simple, and the concomi-
tant computational approaches are difficult.

If we consider just one solvent unit, which may be a single
atom in the simplest case, this unit is interacting with the dye
molecule in its ground state and (after excitation) in its excited
state. The only difference between the two states is the
promotion of one electron from the HOMO into the LUMO.
Since we consider a single electron to be promoted, the only
possible cause for the spectral red shift must be a solvent-
induced change in the dispersive interaction of this electron with
the solvent unit that cannot be the same for the HOMO and the
LUMO, since otherwise they would cancel. Since the direction
of the spectral shift is always toward lower energies and
dispersive energies are always stabilizing, we conclude that the
electron in its excited state (LUMO) has a stronger dispersive
interaction with the solvent unit than in the ground state
(HOMO). It is often assumed that this is due to a higher
diffusivity of the electron density within the LUMO; this idea
is at the heart of the present treatment and is represented in
Figure 1. The spectral shift,δE, is the difference of the
dispersive energy between the solvent and the dye molecule
with one electron promoted into the LUMO,δEi0, and with the
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electron in the HOMO,δE00:

Here, our goal is to develop a quantitative understanding of
environmental effects on these energies and thereby to obtain a
simple, yet accurate method of estimating the most bathochromic
π f π* transition of an aromatic chromophore in apolar
surroundings.

2. Critical Review of Calculations of Dispersive
Interactions Using Perturbation Theory

The earliest approach for the calculation of UV/vis spectral
shifts is that of Longuet-Higgins and Pople,12 who used time-
independent perturbation theory for the description of dispersive
interactions. In their treatment, the dispersive energy arises from
fluctuating dipole moments of the otherwise nonpolar molecules.
This temporary dipole-dipole interaction energy is contained
in the perturbation Hamiltonian,H′. Assuming pointlike atom-
based dipoles, their pairwise interaction energy varies asr-3,
wherer is the distance between the centers of the two dipoles
(see below). In fact, this is a poor approximation for the
interaction of dipolar charge distributions, except when the
distance between them is large;25 for medium-range dispersive
forces, where the ratio of inter- to intradipolar characteristic
distances significantly exceeds unity, it is more reasonable3,6

to assume a distance dependence roughly proportional tor-2.
In either case, the first-order correction to the energy,

is zero because the expectation values of the dipole moment
operators inH′ are zero for nonpolar atoms in their ground state.
The second-order correction to the energy, when both atoms
are in the ground state, is given by

whereEj andFk are the energies of the atoms A and B in their
jth andkth states. When we use the closure approximation26

for the excited-state energies of atoms A and B with the assumed
r-2 dependence, we obtain for the dispersion energy

Using the long-range dipolar interaction approximation yields
London’s relationship for the dispersion energy26 with an r-6

dependence.
The same approach can be taken to obtain the dispersive

energy of molecules, but the entire chromophore has to be
considered instead of atom A and a solvent unit in the place of
atom B. For the solvent, we will take quasi-spherical entities,
e.g., a methyl group or a methylene group, and use an atomic
wave function for its description. For the chromophore, the wave
function is taken as a linear combination of all atomic orbitals
(LCAO); however, the LCAO expansion causes problems
because it disconnects the included atoms, as we will see later.
The spectral shift from eq 1 with the two dispersion energies
from the excited statei and the ground state 0 of the solute
molecule A is

This is the spectral shift caused by one solvent unit B; to obtain
the total spectral shift, one must add the contributions of all
solvent units.

In the implementation of eq 5, the following need to be
considered:

1. The distance dependence for intermediate-range intermo-
lecular interactions is better approximated by anr-4 dependence
than by one that goes asr-6 (London’s formula), as discussed
above. Some theories are based on ther-6 dependence for long-
range dispersive interactions2,4,5,10,12but are, generally speaking,
not very accurate. Anr-4 dependence has been shown several
times to better represent the intermediate range interac-
tions.1,3,6,8,27In what follows, we will also assume that anr-4

dependence is better (trials of the method described below with
an r-6 dependence indeed yield less satisfactory results).

2. By inserting the LCAO expansion of a complex chro-
mophore3,6 into the perturbation expression eq 5, one explicitly
considers only two-atom interactions (the treatment was initially
formulated for the interaction of two atoms); however, an
aromatic chromophore has delocalizedπ electrons, the polar-
izability of which is strongly anisotropic and dependent on the
environment. Furthermore, the evaluation of matrix elements
with electrostatic potentials is difficult. While a nonpolar solvent
molecule can be considered as a “string of atoms,” e.g., methyl
or methylene groups can be approximated as “rare-gas atoms”8

(because the electrons are localized on these “atoms”), this is
obviously inadequate for an aromatic moiety. To circumvent
these problems, the wave function of the entire molecule is
usually3,6 inserted as a LCAO. The evaluation of eq 5 then yields
n4 terms in the summation, whenn is the number of terms in
the LCAO expansionsall the two-body interactions, which
incorporate one solute atom and the solvent unit, and, in
addition, a large number of three-body interactions,3,6 which
incorporate all possible pairs of atoms in the solute molecule
and the solvent unit. The two-body terms are proportional to
the square of the orbital coefficient on one solute atom, i.e., to
the local electron density. The three-body terms have no explicit
physical meaning because they contain products of orbital
coefficients at both solute atoms, each of them belonging to a
different state, and comprise somewhat arbitrary geometry
factors. These three-body terms constitute an essential part in(25) Jackson, J. D.Classical Electrodynamics, 2nd ed.; Wiley: New

York, 1975.
(26) Atkins, P. W.; Friedman, R. S.Molecular Quantum Mechanics, 3rd

ed.; Oxford University Press: Oxford, 1997.
(27) Maitland, G. C.; Rigby, M.; Smith, E. B.; Wakeham, W. A.

Intermolecular Forces, 1st ed.; Clarendon Press: Oxford, 1981.

Figure 1. Relative energies of HOMO and LUMO of the solute
molecule in a vacuum and in a solvent matrix. Solvation lowers the
energy through dispersive interactions, which are greater for the LUMO.
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this approach, even though a physical justification has never
been given.1,3,6,8 The delocalization of the electrons between
the atoms and the existence of nodal planes are not considered,
since all terms in the summations collectively describe a single
temporary molecular dipole. In reality, the evaluation of the
matrix elements in eq 5 with appropriate electrostatic potentials
employing an LCAO expansion for the solute is almost
impossible. Below we will also examine a simple two-atom
interaction (see section 5.2), which will turn out to be as precise
as the perturbation expansion.

3. From the computational point of view, the perturbation
approach is not efficient. For a chromophore such as perylene,
for instance, 92 states would have to be included in the LCAO
expansion, and all of them would have to be used in the
calculations, leading to more than 106 terms in the perturbation
summation eq 5.3,6

It is obvious from the above discussion that the perturbation
method yields complicated, not completely physical, and
inefficient approaches; an excessive number of ill-defined terms
must be computed. The method featured below requires, in
contrast, only 40 terms. It is this advantage plus the fact that
the physical basis for these terms is sound, if approximate, that
favors this approach. Some other methods, based on “single-
center” molecular polarizabilities,2,4,5 are even less demanding
computationally, although their precision is also considerably
smaller; nevertheless, Adams and Stratt4,5 have obtained good
results for benzene approximated as a spherically symmetric
solute.

3. Systems Considered and Methods Employed

3.1. The Chromophore-Alkane System.The systems considered
here are (a) inclusion sites of perylene in solidn-alkanes and (b) dilute
solutions of perylene in liquidn-alkanes.

(a) In solid n-hexane, a perylene molecule (see Figure 2) can be
inserted into the lattice by replacing two alkane molecules so that the
molecular plane of perylene is parallel either to thebc or to theab
plane of the crystal axis system.1 If it is parallel to thebc plane, the
long axis of perylene has two possible orientations: it can be parallel
to the long axis (b axis) of the lattice, corresponding to inclusion “site
1”, or rotated against it by 60°, corresponding to the inclusion “site
2”.1 If it is parallel to theab plane, the long axis of perylene is parallel
to the b axis, yielding inclusion “site 3”.1 These sites are very well
defined in the total luminescence spectra (TLS, see section 3.3).
Leontidis et al.9 have shown that for highern-alkanes, inclusion site 1
exists and corresponds to a sharp, intense peak in the TL spectrum,

but that there are no clearly identified arrangements corresponding to
sites 2 and 3; instead, we find an ill-defined inclusion site with a
considerably lower spectral shift and only a weak structural analogy
to site 3. We employ the well-defined sites, the three sites inn-hexane
and sites 1 ofn-heptane ton-nonane, to test the model developed.

(b) In solution, the molecular environment of any molecule is
relatively vaguely defined. We consider the spectral shift of perylene
in dilute solutions ofn-alkanes with 6-10 carbon atoms, estimated
from a number of thermalized snapshots for every system and compared
to experimental values (see section 3.3).

3.2. Molecular Modeling.The Shpol’skii (solid inclusion) systems
of perylene inn-alkanes were modeled starting with crystals defined
by periodic boxes of 300-400 alkane molecules; room for a single
perylene inclusion was obtained by replacing two or three of the alkane
molecules, depending on the specific inclusion site studied.9 All
molecular simulations were carried out with the Discover program8

and the Insight 400 graphic interface. The energy of the generated
structures was first minimized by molecular mechanics, and then the
solid was equilibrated byNVT molecular dynamics for about 40 ps
(time step 1 fs, Verlet’s integrator, temperature control by velocity
scaling). During the next 50 ps, 100 snapshots were collected, and for
each of them, the spectral shift for perylene was estimated. The final
values are the averages of those spectral shifts.

The dilute solution systems were constructed by placing 60n-alkane
molecules and one perylene molecule in a cubic cell with the overall
density of the liquidn-alkane at 300 K and 1 bar. After energy
minimization, the system was subjected toNVT or NpT molecular
dynamics for 600-1000 ps, and during the next 200 ps, 100 snapshots
were taken to calculate the spectral shifts (for theNpT simulations,
Andersen’s manostat was used with a cell mass of 100 and a pressure
of 0.16 GPa to maintain the density). During the sampling interval,
the molecules on average diffuse about 3-6 times the box edge length;
the calculated shifts for each snapshot are not noticeably correlated.
The spectral shifts obtained throughNpT andNVT simulation are not
significantly different.

3.3. Experimental.The spectral shifts for the solid inclusion sites,
measured with total luminescence spectroscopy (TLS), have all been
taken from the literature.8,19,23,24,28The spectral shifts in the dilute alkane
solutions were measured using a Lambda 9 Perkin-Elmer UV/VIS/
NIR spectrometer with a slit width of 0.5 nm. The solutions had a
concentration of about 1.5× 10-4 M. At this concentration, we assume
that π-stacking interactions due to mutual instantaneous polarization
of perylene molecules do not frequently occur.14 The results are included
in Table 4.

4. The Electronic States

4.1. Aromatic Solute.We employ a standard semiempirical
method, appropriate for the chromophore in question (perylene),
such as the Hu¨ckel method, extended Hu¨ckel method, MNDO,
or AM1.29 From these we obtain for each electronic state its
symmetry, its energy, and its orbital coefficients (the square of
which represents the electron density at each atom).30 It has to
be decided which electrons exert influence in the excitation
process. The wave function of the solute molecule, written as a
linear combination of atomic orbitals, is

where theφσ’s are the atomic orbitals of theσ electrons and
theφπ’s are those of theπ electrons. All semiempirical methods
surmise that for any of the states, the contribution of theσ
electrons,Ψσ, is orthogonal to that of theπ electrons,Ψπ

(28) Karcher, W.Spectral Atlas of Polycyclic Aromatic Compounds (Vol.
2); Kluwer Academic Publishers: Dordrecht, 1990.

(29) Leach, L. R.Molecular Modeling: Principles and Applications, 1st
ed.; Longman: Harlow, England, 1996.

(30) Okruss, M.; Mu¨ller, R.; Hese, A.J. Chem. Phys.1999, 110, 10393-
10402.

Figure 2. Numbering system employed for perylene and its orbital
coefficients for HOMO and LUMO. The absolute values of the orbital
coefficients at the atoms 1-4 are denotedc1-c4; at all other atoms
they are obtained by symmetry. Their relative signs can be derived
from the MO pictures in Figure 3. The LUMO coefficients are
multiplied with a factorx to account for the increased polarizability of
the electrons in the excited state (see text).

Ψtotal ) ∑
i

ciφσ + ∑
j

cjφπ ) Ψσ + Ψπ (6)
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(〈Ψσ|Ψπ〉 ) 0). Thus, there will be no changes in the distribution
of the σ electrons during aπ f π* transition, and the
considerations can be limited toπ electrons only. Consequently,
it is also possible to ignore all hydrogen atoms on the aromatic
molecule.

It is also unlikely that allπ states need to be considered,
since we are interested inπ f π* transitions only. To assess
the relevance of particular states, the energy spacings of theπ
orbitals around the HOMO and LUMO need to be examined.
For our example of perylene, the corresponding values are listed
in Table 1. Here we assign the relative energy 1.0 to the frontier
orbital transition. Table 1 shows that the energy spacing to the
neighboring orbitals is of the same magnitude, which indicates
that, to a good approximation, we can neglect electronic states
other than the HOMO and LUMO for the transition of concern
(interestingly, the different semiempirical methods give rather
different values!). By considering only the HOMO and LUMO,
the problem is considerably reduced.

The frontier orbitals of perylene are graphically presented in
Figure 3. There are nodal planes along all the principal molecular
axes in the HOMO and along two of the principal axes in the
LUMO. Only four different absolute values for the orbital
coefficients exist in both states considered: these values,c1-
c4, are assigned to carbon atoms 1-4 in Figure 2. Their signs
can be taken from the symmetries in Figure 3. In the HOMO,
we can distinguish between two types of electron clouds, each
spread over two atoms and occurring four times. In the LUMO,
there are three types of electron clouds, two spread over two
atoms and one localized on one atom only (see Figure 3).

Since the semiempirical methods do not necessarily all give
the same results, one must be chosen for a particular project.
The four principal orbital coefficients are compared in Table 2.
The differences between them are not significant, and we found
that the particular choice of method does not change the results
of the shift calculations significantly. The Hu¨ckel method was
chosen for its simplicity and because it has no adjustable
parameters.

Consider the difference in the electron distribution between
the HOMO and LUMO. If the electron densities, represented
by the square of the orbital coefficients, are the same at every
atom in both states, the polarizabilities should be similar because
the polarizability is dependent on electron (de)localization. As
a result, only a minimal spectral shift would be observed.
However, experience shows that the reverse is true.1-6 The
polarizability as well as its anisotropy increases in the excited
state.30 These polarizabilities can be computed for the entire
molecule, but their precise evaluation is a cumbersome affair.31-34

In the following, we propose a simple local approximation: the
simplest way to account for the “diffusivity” of the electrons
in the exited state is to rely on the additional nodal planes in

the LUMO. We propose to include the cross termscicj in the
normalization of the orbital coefficients,

which will produce negative contributions for nodal areas
between connected atoms, thereby increasing the orbital coef-
ficients. The scaling factorx for the orbital coefficients derived
from eq 7 is

This factor will be used to scale the orbital coefficients of the
LUMO relative to the HOMO (xLUMO/xHOMO); the coefficients
for the HOMO are normalized in the usual way, without cross
terms, and represent the real electron densities. For perylene,
we obtainxLUMO/xHOMO ) 1.192; i.e., in the LUMO the electrons
are roughly 42% more polarizable (1.1922 ≈ 1.42). Experimental
results35 show for the entire molecule a higher polarizability of
the exited state over the ground state of 40%; our extremely

(31) Schu¨tz, M.; Hutter, J.; Lu¨thi, H. P.J. Chem. Phys.1995, 103, 7048-
7057.

(32) Jonsson, D.; Norman, P.; Luo, Y.; Ågren, H.J. Chem. Phys.1996,
105, 581-587.

(33) Jonsson, D.; Norman, P.; Ågren, H.; Luo, Y.; Sylvester-Hvid, K.
O.; Mikkelsen, K. V.J. Chem. Phys.1998, 109, 6351-6357.

(34) Hättig, C.; Christiansen, O.; Coriani, S.; Jorgensen, P.J. Chem. Phys.
1998, 109, 9237-9243.

(35) Liptay, W. In Excited States; Lim, E. C., Ed.; Academic Press:
London, 1974; Vol. 1, p 208.

Table 1. Relative Energy Spacing near the Frontier Orbitals in
Perylene As Given by Various Semiempirical Methods

π orbitals considered Hu¨ckel
extended
Hückel MNDO AM1

[HOMO - 1] f HOMO 0.39 0.77 1.41 1.37
HOMO f LUMO 1.00 1.00 1.00 1.00
LUMO f [LUMO + 1] 0.39 1.08 1.29 1.25

Figure 3. HOMO (above) and LUMO (below) of perylene. There are
two nodal planes along the long axis of the molecule. In the HOMO,
two differently shaped lobes of electron density can be found that are
spread over two atoms. In the LUMO, three different lobes of electron
clouds are observed; one of them is localized on one atom only. All
these lobes occur repeatedly for symmetry reasons.

∑
i

ci
2 + ∑

connected atoms
i andj

cicj ) 1 (7)

x ) x1 - ∑
connected atoms

i andj

cicj (8)
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simple approximation seems to be suitable for such estimations.
It is also interesting that the spectral shift calculations are not
very sensitive to the ratioxLUMO/xHOMO; changing this number
between 1.15 and 1.25 does not alter the results in a significant
manner.

To sum up, we consider only theπ electrons of the
chromophore in the frontier orbitals, using the simple Hu¨ckel-
MO scheme. The increased “mobility” of the electrons in the
LUMO is estimated with the aid of cross terms including
products of the orbital coefficients.

4.2. Solvent.The alkanes in our case are divided into methyl
and methylene groups and are treated as quasi-atoms. This
approach works well because the electrons that give rise to
dispersive forces are localized on these groups. Methyl and
methylene groups have different polarizabilities (2.22 and 1.84
Å3).36,37 The effect of a solvent group on the solute molecule
transition is then calculated, and the contributions of each group
are independently summed.

5. Novel Computational Models for Spectral Shifts

For our model case, perylene, the symmetries of the electron
distributions in the HOMO and in the LUMO were first
calculated, plus the numerical values for the four distinct orbital
coefficients. Bond polarizabilities were taken from the literature
to describe the direction-dependent polarizabilities of the various
electron clouds in the frontier orbitals. This and the geometry
of the system allow us, then, to compute the dispersive
interaction between the electron clouds and the solvent units.
This procedure is executed for all relevant electron clouds in
the HOMO and LUMO, yielding the dispersion energies in both
electronic states. The desired red shift is finally calculated using
eq 1.

The dispersion energy between one solvent molecule B and
the solute molecule A is given by

where the summation overi comprises all carbon atoms of A
andRi is the polarizability at atomi. The distance dependence
for medium-range dispersion forces was discussed in section
2; all alkyl groups with a distance of more than 1000 pm will
be omitted since their contribution to the shift is not significant.
The value ofRi is calculated using bond polarizabilities from
the literature,36,37 see below.Ri depends on the position of the
solvent unit relative to the respective electron cloud on the
solute.RB is the polarizability of the alkyl group considered,
and k is a fitting constant used to adjust the spectral shift of
one selected line; for perylene, inclusion site 1 inn-hexane8

was used (see section 3.1). The total spectral shift for solvent

unit B is then given by

whereRi
excitedandRi

groundare the polarizabilities of the electron
cloud at atom i for the excited and the ground states,
respectively. This is the spectral shift caused by one solvent
unit B; to obtain the total spectral shift, one must add the
contributions of all solvent units.

5.1. Method A: The General Approach.The polarizabilities
Ri

excited and Ri
ground are obtained as follows. The shape of the

electron clouds is between that of a singleπ bond and that of
a singly occupiedp orbital (see Figure 3). The polarizability
tensors for the CdC and the CsC bonds are known,37 and that
of a single p orbital can be deduced from the polarizability of
a methyl radical36 minus the bond polarizabilities for the C-H
bonds.37 For theπ bond, we estimate the polarizabilities in the
direction of the principal axes as the difference between those
of a double bond and a single bond (see Table 3); the bond
lengths of the two bonds are different (133 vs 154 pm) and
also different from that of an aromatic bond (141 pm), but
calculations with slightly changed values give essentially
identical results (bear in mind that the electron localization
description on the basis of the shape of an ordinaryπ bond is
already a considerable approximation). The similarity in the
values for Ryy and Rzz (see Table 3) suggests cylindrically
symmetric aromatic bonds, and we surmise thatR|

0 ) 1.83 Å3

andR⊥
0 ) 0.49 Å3 (here we use the deprecated, but convenient

unit cubic angstroms: 1 Å3 ) 10-30 m3). For the single p orbital
we assume an isotropic polarizability and estimate it from that
of a methyl radical, calculated using Miller’s36 atomic polar-
izability increments to 3.088 Å3. After subtraction of the
polarizability of three C-H bonds (3× 0.65 Å3) one obtains
Rp ) 1.14 Å3. Modification of this value between the limitsRp

) 0.88 and 1.23 Å3 still gave excellent agreement with
experiment. The best value overall seems to beRp

0 ) 1.06 Å3.
One must now calculate the values forR| and R⊥ for each

type of electron cloud in the HOMO and LUMO because the
shape of these lobes deviates considerably from that of a
“normal” π bond (see Figure 3). A normalπ bond is centered
at two carbon atoms and characterized by a cloud with an
integral charge density of unity and the same electron density
at both atoms, while a singly occupied p orbital has the electron
density zero at one of the two atoms. A crude approximation
might involve scaling the two atomic polarizability components
linearly between these two extreme cases, using the ratio of
the electron densities at the two carbon atoms as a scaling
parameter. The physical justification rests on the fact that the
polarizability in a given direction depends on the electron
density; also, this approach avoids introducing new parameters.
Hence, assuming that exactly one electron is localized in the
cloud, we scale the longitudinal and vertical components of the
polarizability of atomi as shown in Figure 4. Next we multiply

(36) Miller, K. J. J. Am. Chem. Soc.1990, 112, 8533-8542.
(37) Isaacs, N. S.Physical Organic Chemistry, 2nd ed.; Longman: New

York, 1995.

Table 2. Comparison of the Absolute Values of the Orbital
Coefficients Generated by Several Semiempirical Quantum
Mechanical Methods

coefficient Hückel
extended
Hückela MNDO AM1

c1 0.3283 0.3267 0.3154 0.3186
c2 0.1140 0.1085 0.1003 0.1007
c3 0.2887 0.2972 0.2957 0.2943
c4 0.2143 0.2078 0.2302 0.2274

a In the ground state only.

δED ) -kRB ∑
i

Ri

rA,B
4

(9)

Table 3. Polarizability Components for Various Occupied Lobes,
from Ref 37, in Å3 a

electron space Rxx Ryy Rzz

CdC bond 2.80 0.73 0.77
CsC bond 0.97 0.26 0.26
π bond (estimated) 1.83 0.47 0.51

a The x direction is parallel to the given bond,y and z are
perpendicular so that thez axis is in the direction of the p orbitals
forming theπ bond.

δEB ) (δEi0 - δE00)B ) -kRB∑
i

Ri
excited- Ri

ground

rA,B
4

(10)
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these “normalized” polarizabilities,R| andR⊥, with the electron
densities at the respective carbons (the polarizability is propor-
tional to the polarizable charge). Thus, we obtain for the
longitudinal components of the polarizabilities at the atomsi
and j:

i and j must be chosen such thatci
2 < cj

2. The vertical
components are given similarly:

The total atomic polarizability of atomi is a second-rank
tensor. For a polarizability tensor of cylindrical symmetry, the
effective direction-dependent scalar polarizability can, therefore,
be approximated as38

whereæ is the angle between the long axis of the electron cloud
and the direction vector connecting the carbon atom of that cloud
and the solvent unit. Explorative calculations with a triaxial
model for the polarizabilities yielded essentially identical values.

For an electron cloud centered on only one atom, as for
perylene atoms 1, 8, 9, and 16 in the LUMO (see Figures 2
and 3), a singly occupied p orbital with an isotropic polarizability
is used:

In summary, method A consists of first calculating the two
principal polarizability components or the isotropic polarizability
for each atom of perylene, for both HOMO and LUMO, using
eqs 11-14 and 16. The total spectral shift arising from all
solvent units B is then given by eq 10, where the summation
runs over all perylene carbonsi. Carbon atoms 17-20 on the
long axis (see Figure 2) can be omitted, since they lie in a nodal
plane. The polarizabilitiesRi

excitedandRi
groundfor perylene atom

i with respect to the solvent unit considered are calculated from
eqs 15 and 16.

The method outlined above applies to any structure containing
perylene and a nonpolar solvent. We have applied it to two
different situations: (a) the Shpol’skii system perylene in solid
n-alkanes and (b) dilute solutions of perylene inn-alkanes.
Computation results for some prominent inclusion sites of
perylene in solidn-alkane matrixes8 and in solution at standard
temperature and pressure are displayed in Table 4 together with
the experimental values. The agreement with the measurement
data is very good.

In the following sections, the sensitivity of the method toward
greater simplifications is examined.

5.2. Method B: Atom-Centered Polarizabilities Only.
Consider the spatial extension and the shape of the electron
distribution, but only take account of the local electron densities
centered at each atom of the chromophore, summing over
explicit two-atom interactions only in eq 10. The polarizability
difference of each carbon atom of the aromatic molecule in the
two electronic states is thought to be proportional to that atom’s
electron density only. One can then use the electron density
itself, e.g., that for the HOMO, in place ofRA

excited - RA
ground

because we are using a fitting factor (k) to match the calculated
shift for the inclusion site 1 inn-hexane to experiment. In this
case the formula for the shift calculation for molecule A and
all n solvent units B simplifies considerably:

Despite its simplicity, this method gives excellent results, of a
precision not significantly lower than those from the perturbation
treatments,8,9 as can be seen in Table 4.

5.3. Method C: Atom-Centered Polarizabilities with an
Empirical Geometry Factor. A cumulative polarizability factor
might improve method B. It is based on the following
considerations: a solvent unit positioned above the plane of
the aromatic molecule will interact with fewer polarizable
electron clouds in the chromophore than if it were located in
the plane of the aromatic molecule. Trying to account for this
effect, we suggest an empirical geometric factor, 2- |cosγi|,
whereyi is the angle between the normal to the plane of the
perylene molecule and the distance vector between perylene
carboni and the solvent unit. This factor is equal to 1 if the
connector between atomi and solvent unit is perpendicular to
the plane and equal to 2 if the solvent atom lies in the perylene
plane, and

(38) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.Molecular Theory of
Gases and Liquids; Wiley: New York, 1964.

Figure 4. When an electron cloud is delocalized over two atomsi
and j, on which we find different electron densities, the normalized
polarizability components parallel (R|,i) and perpendicular (R⊥,i) to the
long axis of the cloud are obtained by linear interpolation between a
“normal” π bond and a singlep orbital, according to the ratio of the
electron densities at the two carbons (see text).
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This formula gives results with somewhat improved precision
compared to method B (see Table 4).

5.4. Method D: Four-Center Model with Interactions on
Both Sides of the Plane.A further simplification begins with
model B (eq 17) but takes into account only the four sym-
metrically distinct carbon atoms of perylene that have the highest
electron density. These form the outer carbons, numbered 1, 8,
9, and 16 (see Figures 2 and 3). Together they account for 40%
of the total electron density and are arranged symmetrically
around the central aromatic ring. This simplification is rather
crude, but the values obtained are still of reasonable quality
(see Table 4).

An attempt to refine this model was made taking into account
that the p electron clouds of the chromophore are divided into
two enantiomeric parts, below and above the molecular plane,
which have equal polarizabilities but contribute differently to
the dispersion energy because their distance to the particular
solvent unit is different. The two parts are displaced by ca.(60
pm from atomi in the perylene plane, a little less than half the
C-C bond length of 140 pm. This refinement was found not
to cause significant changes in the results.

5.5. Method E: Symmetric Electron Clouds. The final
simplification involves the assumption that every electron cloud
that is distributed over two carbon atoms is symmetric with
respect to the midpoint between these two atoms (as if the orbital
coefficients at both atoms were the same). This is equivalent to
modeling the electron distribution with ordinaryπ bonds with
lower overall electron density. Furthermore, these two-center
clouds are represented by a single polarizable entity in the
middle of the bond. Equations 11-14 simplify to

wherei andj denote the two atoms of the cloud. The summation
in eq 10 involves fewer terms since only the midpoints of C-C
bonds are considered. For the single atom clouds in the LUMO,
eq 16 still applies.

Inspecting the squares of the orbital coefficients at perylene
carbon atoms 1 and 2 in the HOMO (they differ by about 1
order of magnitude, see Table 2) indicates that this is a severe
approximation; indeed, the results thus obtained deviate often
by more than 50 cm-1 from the experimental results (see Table
4).

6. Conclusions

A new, conceptually very simple approach to the calculation
of UV/vis spectral shifts has been introduced, which can be
applied to any aromatic molecule in a nonpolar solvent matrix
of arbitrary density and structure. The approach contains one
fit parameter, used to reproduce one of the well-understood shifts
of that chromophore. The agreement with the experimental
results is excellent considering the simplicity of the models,
and the method is certainly computationally very much less
demanding than its many alternatives. A number of simplifica-
tions allow one to choose between accuracy and simplicity.

A often used perturbation theory approach, the SBEJ method3

(see Table 4), fares well in solid matrixes, although it is
computationally very demanding. It seems to be less well-suited
for liquid structures, where even our dramatically simplified
models, e.g., model D that only has eight terms per solvent unit
in the summation, give better values when compared to
experiment. It must be said, however, that the system size
sensitivity of our results has not yet been sufficiently explored
for liquid systems (in contrast to the crystalline systems
considered); a full investigation of this point would, however,
require extensive further calculations. For accuracy, it might
be that the SBEJ method is the most favorable. The advantage
of our methods lies in their theoretical simplicity, ease of
implementation in a computational program for a particular
system, and efficiency.

The ideas put forward in this paper are rather general. We
expect that essentially any planar aromatic compound can be
treated the same way as perylene here. Also, they lend
themselves to expansion to more complicated systems, e.g.,
those with polar constituents or hydrogen bonding.

Table 4. Experimental and Computational Spectral Shifts (in cm-1) for Well-Defined Inclusion Sites of Perylene in Solidn-Alkanes and in
Dilute Liquid Solutionsa

methodb

system or
inclustion site exptl

A
(k ) 29 265
cm-1/Å2)

B
(k ) 24 229
cm-1/Å2)

C
(k ) 7367
cm-1/Å2)

D
(k ) 10 599
cm-1/Å2)

E
(k ) 23 338
cm-1/Å2)

SBEJ
(k ) 0.3094
cm-1/Å2)

Inclusion Sites in the Solid
site 1 hexanec -1657 -1657 -1657 -1657 -1657 -1657 -1657
site 2 hexane -1596 -1593 -1582 -1597 -1581 -1644 -1596
site 3 hexane -1532 -1532 -1563 -1596 -1558 -1523 -1527
site 1 heptane -1605 -1601 -1619 -1606 -1574 -1560 -1570
site 1 octane -1565 -1570 -1589 -1570 -1536 -1514 -1544
site 1 nonane -1540 -1558 -1592 -1559 -1512 -1463 -1524

rms deviation (8 (30 (18 (26 (51 (19

Liquid Solutions
n-hexane -1071 -1072 -1073 -1072 -1047 -1063 -938
n-heptane -1095 -1131 -1127 -1126 -1108 -1125 -997
n-octane -1121 -1148 -1148 -1150 -1126 -1144 -1022
n-nonane -1142 -1192 -1192 -1185 -1164 -1183 -1067
n-decane -1163 -1203 -1209 -1206 -1183 -1200 -1088

rms deviation (35 (36 (33 (18 (30 (98

a The computational results were obtained with the methods described in the text and that by Shalev, Ben-Horin, Even, and Jortner (refs 3, 8,
9). The accuracy of the method is measured by the root-mean-square deviation of the predicted from the observed shifts. The transition in vacuum
occurs at 24 070 cm-1. b The column labels refer to the naming of the method in the text, given in the section headings (A, section 5.1; B, section
5.2; C, section 5.3; D, section 5.4; E, section 5.5). The column label “SBEJ” refers to results obtained with the perturbation summation by Shalev,
Ben-Horin, Even, and Jortner (refs 3, 8, 9).c This site is used to determine the factork in the computation, which is the only adjustable parameter.

R|,m ) R|
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2 + cj
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